Estrogen-mediated epigenetic repression of large chromosomal regions through DNA looping.
نویسندگان
چکیده
The current concept of epigenetic repression is based on one repressor unit corresponding to one silent gene. This notion, however, cannot adequately explain concurrent silencing of multiple loci observed in large chromosome regions. The long-range epigenetic silencing (LRES) can be a frequent occurrence throughout the human genome. To comprehensively characterize the influence of estrogen signaling on LRES, we analyzed transcriptome, methylome, and estrogen receptor alpha (ESR1)-binding datasets from normal breast epithelia and breast cancer cells. This "omics" approach uncovered 11 large repressive zones (range, 0.35 approximately 5.98 megabases), including a 14-gene cluster located on 16p11.2. In normal cells, estrogen signaling induced transient formation of multiple DNA loops in the 16p11.2 region by bringing 14 distant loci to focal ESR1-docking sites for coordinate repression. However, the plasticity of this free DNA movement was reduced in breast cancer cells. Together with the acquisition of DNA methylation and repressive chromatin modifications at the 16p11.2 loci, an inflexible DNA scaffold may be a novel determinant used by breast cancer cells to reinforce estrogen-mediated repression.
منابع مشابه
Estrogen-mediated epigenetic repression of the imprinted gene cyclin-dependent kinase inhibitor 1C in breast cancer cells.
While tumor suppressor genes frequently undergo epigenetic silencing in cancer, how the instructions directing this transcriptional repression are transmitted in cancer cells remain largely unclear. Expression of cyclin-dependent kinase inhibitor 1C (CDKN1C), an imprinted gene on chromosomal band 11 p15.5, is reduced or lost in the majority of breast cancers. Here, we report that CDKN1C is supp...
متن کاملControl of gal transcription through DNA looping: inhibition of the initial transcribing complex.
Involvement of DNA looping between two spatially separated gal operators, OE and OI, in repression of the gal operon has been demonstrated in vivo. An in vitro transcription assay using a minicircle DNA containing the gal promoter region with lac operators was employed to elucidate the molecular mechanism of repression. Wild-type lac repressors (LacI+ protein molecules), which are capable of as...
متن کاملHistone modifications and chromatin organization in prostate cancer.
Epigenetic mechanisms, including histone modifications, nucleosomal remodeling and chromosomal looping, contribute to the onset and progression of prostate cancer. Recent technical advances significantly increase our understanding of the genome-wide epigenetic regulation of gene expression in prostate cancer. Aberrant genomic distribution and global level of histone modifications, nucleosome re...
متن کاملCancer Cells Estrogen-mediated Down-Regulation of E-cadherin in Breast
E-cadherin is an important mediator of cell-cell interactions, and has been shown to play a crucial role in breast tumor suppression. Its inactivation occurs through instability at its chromosomal locus and mutations, but also through epigenetic mechanisms such as promoter hypermethylation and transcriptional silencing. We show here that the potent mitogen estrogen causes down-regulation of E-c...
متن کاملEstrogen-mediated down-regulation of E-cadherin in breast cancer cells.
E-cadherin is an important mediator of cell-cell interactions, and has been shown to play a crucial role in breast tumor suppression. Its inactivation occurs through instability at its chromosomal locus and mutations, but also through epigenetic mechanisms such as promoter hypermethylation and transcriptional silencing. We show here that the potent mitogen estrogen causes down-regulation of E-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2010